مدلسازی جریان عرضه و تقاضای بهینه برق شهری با استفاده از انرژی‌های تجدیدپذیر در استان فارس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار انرژی‌های نو و محیط زیست، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران

2 دانشجوی کارشناسی ارشد مهندسی انرژی‌های تجدیدپذیر، دانشکده علوم و فنون نوین، دانشگاه تهران، تهران، ایران

چکیده

گسترش استفاده از منابع انرژی‏های‏ تجدیدپذیر در کشور و عدم قطعیت‏‏های همراه آن، لزوم برنامه‏ریزی و مدل‌سازی انرژی را پررنگ می‏کند. استان فارس یکی از استان‏های پهناور و پرجمعیت کشور است که پتانسیل مناسبی برای بهره‏گیری از منابع تجدیدپذیر دارد، اما قیمت سطح پایین سوخت‌های فسیلی در کشور، باعث محدود کردن سهم منابع تجدیدپذیر در تأمین برق این استان شده است. در این پژوهش با استفاده از نرم‏افزار EnergyPLAN سیستم عرضه‌ـ تقاضای برق استان را تا سال 1399 مدل کرده و با تعریف سناریوهای مختلف برای منابع تجدیدپذیر و با در نظر گرفتن پارامترهای محیط زیستی، گاز طبیعی مصرفی و درصد منابع تجدیدپذیر به مقایسۀ حالت‌های مختلف سیستم عرضه‌ـ تقاضا پرداخته می‏شود. در ادامه، با مدل‌سازی سیستم عرضه‌ـ تقاضا برای 4 سال آینده، میزان رشد منابع تجدیدپذیر در سیستم تخمین زده شده و پارامترهای یادشده مورد بررسی قرار می‏گیرند. نتایج مدل‌سازی برای حال نشان می‌دهد در صورت نبود نیروگاه‌های تجدیدپذیر در این استان، سالانه 280 هزار تن دی‌اکسید کربن بیشتری منتشر می‌شد. همچنین، نتایج شبیه‌سازی برای آینده بیانگر آن است که در صورت احداث نیروگاه‌های جدید، میزان نفوذ تجدیدپذیر به عدد 8/14 درصد خواهد رسید که سبب جلوگیری از انتشار 930 هزار تن دی‌اکسید کربن نسبت به حالت پایه (عدم احداث نیروگاه جدید) تا سال 1403 خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The optimal Modeling of Supply and Demand Flow of Urban Electricity using Renewable Energy in Fars Province

نویسندگان [English]

  • Mohammad Hossein Jahangir 1
  • Alireza Behrad 2
  • Reza Mokhtari 2
1 Associate professor, Renewable Energy and Environment Engineering Group, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
2 MS Student of Renewable energy Engineering, Renewable and Environmental Engineering Group, University of Tehran, Tehran, Iran
چکیده [English]

Introduction
Today, energy is one of the most critical elements of society. With the increase in the world population, energy demand is growing intensely. In this regard, traditional fossil fuel thermal power plants have negative environmental impacts. However, renewable energy systems can produce much cleaner energy using renewable resources. Therefore, countries are transitioning from traditional fossil fuel-based power plants to fully renewable energy systems for a more sustainable world. However, to build an efficient plan for the renewable energy transition, an accurate and comprehensive model is required that can calculate the expected impacts of each strategy to follow. 
Materials and methods
EnergyPLAN, an input/output energy system modeling tool with various available components, provides the opportunity to accurately model any energy strategy model. In this study, EnergyPLAN is used to model the energy system of Fars and investigate the potential of the province. Fars is the fourth most populous province in Iran, with an approximate population of 4.8 million. Having 3.26 kWh and 7.21 kWh of minimum and maximum daily solar radiation has made Fars a potential province for solar energy. Also, the annual average wind speed of 5.43 m/s provides opportunities for wind turbine investments. 
In this study, the energy system of the Fars province in the past, present, and future periods are modeled using EnergyPLAN. For the past modeling, the historical data of energy demands and supplies are used; then, for modeling the current energy systems, the relevant data are gathered and modeled in EnergyPLAN. For future energy system modeling, the realistic data for the Fars province are used in the modeling. Eventually, the environmental impact of these scenarios is compared.
Findings
The modelings are performed considering the electricity demands and any power plants (for example, thermal power plants, renewable energy systems, and hydropower). Modeling the past scenario indicates that 26.94 MTon CO2 would have been emitted in the past four years. The second scenario is built upon the premise that the prevailing renewable energy systems had been constructed four years ago. The result of this scenario demonstrates a 1.11 MTon less CO2 emission compared to the first scenario. The results of modeling the current energy systems of Fars indicate that existing renewable energy systems in the province are 3% of the total electricity demand. Also, further analysis suggests that in the absence of current renewable energy systems in the province, 280,000 Tons more CO2 will be emitted.
For the future scenario, the current data are forecasted for the future, using the previous trend in the growth of demands and supplies. Considering that no new power plants will be built until 2024, the results indicate that the renewable energy fraction will rise to 2.7 % by 2024. However, by using the available data on the construction plans of renewable energy systems until 2024, the results indicate that the renewable energy fraction will reach 14.8 %, and 930,000 Ton less CO2 will be emitted compared to the previous case. 
Discussion and conclusion
EnergyPLAN as an accurate energy modeling tool has been used in this study to model the past, current, and future energy flow of Fars province. This has happened by using historical and current data and forecasting future data. The results showed that if the existing renewable energy plants had been built four years sooner, 1.11 MTon less CO2 would have been emitted until now. This demonstrates the role of timing in the construction of renewable energy systems. 
The result of modeling the current and future energy scenarios indicates that if the current renewable energy systems are built until 2024, 930,000 Ton less CO2 will be emitted. 
Therefore, considering the province’s high solar and wind potential, it is suggested that more renewable energy systems be built to decrease the CO2 emission cumulatively, and the construction of the traditional power plants should be prohibited. Also, other sources of renewables like biomass and geothermal should be considered in the energy planning to provide a more versatile renewable energy supply to the province. However, the fossil fuel power plants have the advantage of low cost in Iran, making the competition challenging for clean energy sources. Removing the subsidies for fossil fuels can make the competition fairer and provide more opportunities for renewable energy systems to grow in the province.

کلیدواژه‌ها [English]

  • EenrgyPLAN
  • Fars province
  • Renewable energy resources
  • Supply/demand system modelling

[1] Tetsunari, L. Renewables Japan Status Report 2014. Institute for Sustainable Energy Policies (ISEP). 2014.
[2] Energy Planning ‌ـ  an overview | Science Direct Topics n.d. https://www.sciencedirect.com/topics/engineering/energy‌ـ planning (accessed October 29, 2019).
[3] 2020 climate & energy package | Climate Action 2007. https://ec.europa.eu/clima/policies/strategies/2020_en.
[4] 2030 Energy Strategy ‌ـ European Commission 2014. https:// ec.europa.eu/energy/en/topics/energy‌ـ strategy‌ـ and‌ـ energy‌ـ union/2030‌ـ energy‌ـ strategy (accessed July 19, 2017).
[5] Prina MG, Cozzini M, Garegnani G, Manzolini G, Moser D, Filippi Oberegger U, et al. Multi‌ـ objective optimization algorithm coupled to EnergyPLAN software: The EPLANopt model. Energy 2018;149. http://doi.org/10.1016/j.energy.2018.02.050.
[6] H. Chapter 4 – Tool: The EnergyPLAN Energy System Analysis Model. Renew. Energy Syst., 2014, p. 53–78. http:// doi.org/10.1016/B978‌ـ 0‌ـ 12‌ـ 410423‌ـ 5.00004‌ـ 3.
[7] Ben Amer S, Bramstoft R, Balyk O, Nielsen PS. Modelling the future low‌ـ carbon energy systems‌ـ case study of greater Copenhagen, Denmark. Int J Sustain Energy Plan Manag 2019;24:21–32. http://doi.org/10.5278/ijsepm.3356.
[8] Heinisch V, Göransson L, Odenberger M, Johnsson F. Interconnection of the electricity and heating sectors to support the energy transition in cities. Int J Sustain Energy Plan Manag 2019;24:57–66. http://doi.org/10.5278/ijsepm.3328.
[9] Aravena JC, Aghahosseini A, Bogdanov D, Caldera U, Muñoz‌ـ Cerón E, Breyer C. The role of solar PV, wind energy, and storage technologies in the transition toward a fully sustainable energy system in Chile by 2050 across power, heat, transport and desalination sectors. International Journal of Sustainable Energy Planning and Management. 2020 Jan 24;25:77‌ـ 94.
[10] 2050 long‌ـ term strategy | Climate Action n.d. https://ec.europa. eu/clima/policies/strategies/2050_en (accessed October 29, 2019).
[11] Colbertaldo P, Agustin SB, Campanari S, Brouwer J. Impact of hydrogen energy storage on California electric power system: Towards 100درصد renewable electricity. Int J Hydrogen Energy 2019; 44:9558–76. http://doi.org/10.1016/j.ijhydene.2018.11.062.
[12] Nastasi B, Markovska N, Puksec T, Duić N, Foley A. Renewable and sustainable energy challenges to face for the achievement of Sustainable Development Goals. Renewable and Sustainable Energy Reviews. 2022 Apr 1;157:112071.
[13] Bjelić IB, Rajaković N. Simulation‌ـ based optimization of sustainable national energy systems. Energy. 2015 Nov 1;91:1087‌ـ 98.
[14] Mahbub MS, Cozzini M, Østergaard PA, Alberti F. Combining multi‌ـ objective evolutionary algorithms and descriptive analytical modelling in energy scenario design. Appl Energy 2016;164:140– 51. http://doi.org/10.1016/j.apenergy.2015.11.042
[15] Mathiesen, B.V., et al., Smart Energy Systems for coherent 100درصد renewable energy and transport solutions. Applied Energy, 2015. 145: p. 139‌ـ 154.
[16] Tonini, D. and T. Astrup, LCA of biomass‌ـ based energy systems: a case study for Denmark. Applied Energy, 2012. 99: p. 234‌ـ 246.
[17] Lund, H. and B.V. Mathiesen, The role of carbon capture and storage in a future sustainable energy system. Energy, 2012. 44(1): p. 469‌ـ 476.
[18] Oropeza‌ـ Perez, I. and P.A. Østergaard, The influence of an estimated energy saving due to natural ventilation on the Mexican energy system. Energy, 2014. 64: p. 1080‌ـ 1091.
[19] Xiong, W., et al., Heat roadmap China: new heat strategy to reduce energy consumption towards 2030. Energy, 2015. 81: p. 274‌ـ 285.
[20] Ridjan, I., et al., The feasibility of synthetic fuels in renewable energy systems. Energy, 2013. 57: p. 76‌ـ 84.
[21] Nunes, P., T. Farias, and M.C. Brito, Day charging electric vehicles with excess solar electricity for a sustainable energy system. Energy, 2015. 80: p. 263‌ـ 274.
[22] Lund, R. and B.V. Mathiesen, Large combined heat and power plants in sustainable energy systems. Applied Energy, 2015. 142: p. 389‌ـ 395.
[23] Vidal‌ـ Amaro, J.J., P.A. Østergaard, and C. Sheinbaum‌ـ Pardo, Optimal energy mix for transitioning from fossil fuels to renewable energy sources–The case of the Mexican electricity system. Applied Energy, 2015. 150: p. 80‌ـ 96.
[24] Hagos, D.A., A. Gebremedhin, and B. Zethraeus, Towards a flexible energy system–A case study for Inland Norway. Applied Energy, 2014. 130: p. 41‌ـ 50.
[25] Neves, D., A. Pina, and C.A. Silva, Demand response modelling: a comparison between tools. Applied Energy, 2015. 146: p. 288‌ـ 297.
[26] Brandoni, C., et al., Assessing the impact of micro‌ـ generation technologies on local sustainability. Energy Conversion and Management, 2014. 87: p. 1281‌ـ 1290.
[27] Sierra Club. 100درصد commitments in cities, counties, & StatesNo title. 2020. https://www.sierraclub.org/ready‌ـ for‌ـ 100/commitments. [Accessed 18 April 2020].
[28] Jacobson MZ, Cameron MA, Hennessy EM, Petkov I, Meyer CB, Gambhir TK, et al. 100درصد clean and renewable Wind, Water, and Sunlight (WWS) all‌ـ sector energy roadmaps for 53 towns and cities in North America. Sustain Cities Soc 2018.
[29] Gomez Echeverri LG. Investing for rapid decarbonization in cities. Current opinion in environmental sustainability. 2018 Feb 1;30:42‌ـ 51.
[30] Hansen K, Breyer C, Lund H. Status and perspectives on 100درصد renewable energy systems. Energy 2019;175:471–80. https://doi.org/10.1016/J. ENERGY.2019.03.092.
[31] Aalborg University. EnergyPLAN: advanced energy system analysis computer model [cited 2016; Available from: http://www.energyplan.eu/.
دوره 3، شماره 2
تیر 1401
صفحه 82-91
  • تاریخ دریافت: 28 آذر 1400
  • تاریخ بازنگری: 24 اسفند 1400
  • تاریخ پذیرش: 06 اردیبهشت 1401
  • تاریخ اولین انتشار: 27 اردیبهشت 1401